Characterizing electrospray ionization using atmospheric pressure ion mobility spectrometry.
نویسندگان
چکیده
Reduced flow rate electrospray ionization has been proven to provide improved sensitivity, less background noise, and improved limits of detections for ESI-MS analysis. Miniaturizing the ESI source from conventional electrospray to microelectrospray and further down to nanoelectrospray has resulted in higher and higher sensitivity; however, when effects of flow rate were investigated for atmospheric pressure ESI-IMS using a nanospray emitter, a striking opposite result was observed. The general tendency we observed in ESI-IMS was that higher flow rate offered higher ion signal intensity throughout a variety of conditions investigated. Thus, further efforts were undertaken to rationalize these contradictory results. It is well accepted that decreased flow rate increases both ionization efficiency and transmission efficiency, thus improving ion signal in ESI-MS. However, our study revealed that decreased flow rate results in decreased ion signal because ion transfer is constant, no matter how flow rate changes in ESI-IMS. Since ion transfer is constant in atmospheric pressure ESI-IMS, ionization efficiency can be studied independently, which otherwise is not possible in ESI-MS in which both ionization efficiency and transmission efficiency vary as conditions alter. In this article, we present a systematic study of signal intensity and ionization efficiency at various experimental conditions using ESI-IMS and demonstrate the ionization efficiency as a function of flow rate, analyte concentration, and solvent composition.
منابع مشابه
Electrospray ionization high-resolution ion mobility spectrometry-mass spectrometry.
A hybrid atmospheric pressure ion mobility spectrometer is described which exhibits resolving power approaching the diffusion limit for singly and multiply charged ions (over 200 for the most favorable case). Using an electrospray ionization source and a downstream quadrupole mass spectrometer with electron multiplier as detector, this ESI-IMS-MS instrument demonstrates the potential of IMS for...
متن کاملSeparation of sodiated isobaric disaccharides and trisaccharides using electrospray ionization-atmospheric pressure ion mobility-time of flight mass spectrometry.
A series of isobaric disaccharide-alditols, four derived from O-linked glycoproteins, and select trisaccharides were rapidly resolved using tandem high resolution atmospheric pressure ion-mobility time-of-flight mass spectrometry. Electrospray ionization was used to create the gas-phase sodium adducts of each carbohydrate. Using this technique it was possible to separate up to three isobaric di...
متن کاملEvaluation of micro-electrospray ionization with ion mobility spectrometry/mass spectrometry
In recent years, the resolving power of ion mobility instruments has been increased significantly, enabling ion mobility spectrometry (IMS) to be utilized as an analytical separation technique for complex mixtures. In theory, decreasing the drift tube temperature results in increased resolution due to decreased ion diffusion. However, the heat requirements for complete ion desolvation with elec...
متن کاملSecondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.
For the first time, the use of a traditional ionization source for ion mobility spectrometry (radioactive nickel ((63)Ni) beta emission ionization) and three alternative ionization sources (electrospray ionization (ESI), secondary electrospray ionization (SESI), and electrical discharge (corona) ionization (CI)) were employed with an atmospheric pressure ion mobility orthogonal reflector time-o...
متن کاملSeparation of isomeric peptides using electrospray ionization/high-resolution ion mobility spectrometry.
In this paper, the first examples of baseline separation of isomeric macromolecules by electrospray ionization/ion mobility spectrometry (ESI/IMS) at atmospheric pressure are presented. The behavior of a number of different isomeric peptides in the IMS was investigated using nitrogen as a drift gas. The IMS was coupled to a quadrupole mass spectrometer, which was used for identification and sel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 78 22 شماره
صفحات -
تاریخ انتشار 2006